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Metalparticle formation in a plasma jet is described. The conditions necessary 
for monidisperse production are examined. 

Various liquids can be produced as monodisperse droplets [i, 2] from Rayleigh instabil- 
ity in a jet under mechancial perturbations, but this is not applicable to dispersing metals 
with melting points above 1000~ and particularly above 2000~ because of technical difficul- 
ties, namely melting of much of the metal, producing a jet with set parameters, and so on. 

We consider the necessary conditionsfor monodisperse particle production for these two 
groups of high-melting metals. Those conditions for substances with melting points over 
i000-2000~ include [I, 2]: high-temperature heating to liquefy the material, jet production, 
and the application of a constant or periodi c force to produce droplets. We thus consider 
the scope for realizing such dispersal as a function of melting point. We consider a solid 
jet (wire), which is locally heated at the end by a plasma, and where the resulting liquid 
is subject to a constant or periodic force. 

Gas-plasma liquid dispersal involves the feature that the local hot zone is produced by 
a plasma from the combustion of hexane, propane, acetylene, and so on in an oxidant. The 
forces acting on the droplets arise from the aerodynamic force from the plasma jet. 

The dispersal occurs qualitatively as follows. The rod is supplied continuously at rate 
v I to the plasma, where it receives the heat required for heating and melting. After the 
metal melts, capillary forces result in adrop at the end of the rod. As the drop grows, it 
is subject to increasing gravitational and aerodynamic forces, and when the sum of them ex- 
ceeds the capillary forces, the droplet detaches. 

To check that monodisperse droplets can be produced in this way, one needs a strict 
control on parameters such as the rod speed in relation to diameter, the thermal conductiv- 
ity, the temperature, the plasma speed, and so on. 

We approximate the heat transfer from the jet in terms of a plane-parallel flow of hot 
air having H-shaped temperature and velocity profiles. The other end of the rod is in con- 
tact with a remote body having a high thermal capacity and environmental temperature. There 
are two types of heat transfer: convective and radiative. 

The convective transfer is evaluted from Nu for a cylinder in a transverse flow of hot 
air [3]: 

Nu = c . R e  ~. ( 1 )  

In our case, c = 0.81 and n = 0.4, and Re= (v.d)/~ is calculated on the basis that the kine- 
matic viscosity is 9 = f(T). From Nu we determine the heat-transfer coefficient 

% = Nu ;Lid. (2) 

We determine ~i on the basis that ~ = f(T) for air to get the heat flux to the cylinder on 
the assumption (as the area is small) that the temperature is everywhere the same and equal 
to the melting point: 
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TABLE i. Total Heat Flux 
to Heated Part of Cylinder 

d, I0 -4 m Q, W 

1,4 
2,4 
2,8 

4,4 
6,4 
7,1 

QI = (zls  (T - -  Trap ). ( 3 ) 

The radiation flux from the jet to the cylinder is given by Stefan's law [3]: 

Q2 = ~1~2Sa ( Ta - -  T~@. (4) 

The integral flux to the heated part of the cylinder is found by summing (3) and (4): 

Q = a l s  (T - -  Trap ) -f- a~1~2S (Ta - -  Tr~p). ( 5 )  

Table 1 gives the total flux for copper rods with various diameters when the length of 
the part is s = 6 • i0 -s m and the temperature is 2273 K, while the flow has v = i0 m/sec, 
el = 0.6, e 2 = 0.85, as determined from (3). 

When one estimates the melting rate, one needs to consider not only the heat transfer 
from the jet but also that from the free part of the rod to the surrounding medium. We con- 
sider free convection and radiation. 

There is a relation between the numbersdefining the free convection: 

Nu = C (Or- Pr)  n, ( 6 ) 
~gA,T 

in which G r = ~  ; P r = v / % ;  %=k/pcp, Tmv 2 determined for T m. The surface temperature of 
the rod varies'from the melting point Tmp at the point of contact with the heater to the 
environmental temperature Ten at infinity. The characteristic surface temperature Tsu is 
the arithmetic mean of these two, Tsu = (Tmp + Ten)/2. The temperature difference is T = 

Tsu--Ten = (Tmp--Ten)/2, and T m is the mean temperature of the boundary layer, which is 

1 (Tsu ..{_Ten)----~ I T ~  --  ~- ~ (Trap q- 3ren) .  

The c and n in (6) are constants, which for Gr and Pr characteristic of the process are 
c = 1.18 and n = 1/8. One determines Gr and Pr to derive the ~3 related to free convection: 

~3 = Ec (Gr .  Pr)~/d.  ( 7 )  

For ql we have 

ql 0"81 (T ~ 4 - -  - T ~ ) ,  ( 8 )  

in which T is the surface temperature at the given point. We rewrite (8) as 

ql = ag~ [( T2 J-, T ~ ( T  -4- Ten)](T - -  Ten). (9) 

The expression in square brackets on the right in (9) is defined for T = T, su and is taken 
as the effective radiative transfer coefficient: 

2 
O~& ~- (IS 1 (Ts2u ~- Ten)(Tsu ~- Ten). ( 1 0 )  
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TABLE 2. Relation between 

Wire Feed Rate and Radius 

r ,  l O - 4 n l  Q, W v t ,  10  - ~  m/sec 

1,4 
1,2 
0,7 

1,9 
1,57 
0,8 

2,02 
2,57 
5,28 

We determine the radiative heat-transfer coefficient ~4 and the convective coefficient ~3 
to get the total transfer coefficient as additive: 

- ~  O~ 3 - ~  O~A. (ii) 

We thus have all the necessary parameters for deriving the temperature in the free 
part of the rod. 

We assume that the specific heat of the rod is fairly large and that the temperature 
does not vary over the cross section, i.e., the treatment is one-dimensional and the tem- 
perature varies only along the x coordinate. 

The equation for heat transfer in the wire is [3] 

OZT d T  
X~S -- ~P (Y - -  Ten) - -  pcpSva - -  ( 1 2 )  

Ox 2 dx 

The left-hand side is the change in the amount of heat flowing through S. The first term 
on the right describes the radiative-conductive heat transfer from the side surface. The 
second term describes the heat transfer through the cross section due to the motion at v I. 
The minus sign corresponds to the temperature decreasing along the rod, i.e., dT/dx < 0. As 
S = ~r 2 and P = 2~r, we rewrite (12): 

OzT /Ox 2 -t- (OevVl/~,a)(OT /Ox) - -  2c~T /~,lr q- 2aTen/%lr = O. ( 1 3 )  

We solve (13) with theboundary conditions T = Tmp at x = 0 and T + Ten for x + ~ to get the 
temperature distribution: 

T (T Ten ) exp ( - -  V 9~c~ 2 2 = - -  vl/4~,1 +. 2~z/Xlrq-pcvvl /2)~a)x  q- Ten. (14) 

We determine the total heat loss through the side surface, which is governed by the heat 
flux through the cross section at x = 0: 

Q3 = - -  ~r ~,  (OT/Ox)~=o. (15) 

We differentiate 
into (15) to get 

(14) with respect to x and substitute for the derivative at x = 0 

(i6) 

We consider the heat balance equation for the melting of wire advancing through an 
immobile transition front at a constant rate: 

Q = 9Larzv l  + Q~, ( 1 7 )  

in which Q is defined by (5). The second term on the right is the power needed to melt the 
wire moving into the melting zone at speed v I. We substitute for it into (17) and solve for 
v I to get the speed as a function of the physicochemical parameters and thermal power Q from 
the external source: 
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v~= [2L(Tmp--Ten) cvIQ T~p--Zen K, (18 )  
2rtLr29 [L -+- (Trap - -  Ten) cp] 2p~rZL 

in which 

c~Q 2 + 8z~2PczL~ [L + (Trap - -  Ten) cv] ~I/2 

[L -k (Trap - -  Ten) ep] z ) 

We substitute v z = 0 into (18) to get the minimal thermal power producing melting: 

Q = V " ~ l ~ r  3/2 (Tmp- Ten ). ( 19 )  

We u s e  (19)  and (18)  t o  e s t i m a t e  t h e  amount  o f  h e a t  n e e d e d  t o  m e l t  r o d s  w i t h  v a r i o u s  
r a d i i  and made o f  v a r i o u s  m a t e r i a l s ,  and a l s o  t h e  f e e d  r a t e  as  a f u n c t i o n  o f  c r o s s  s e c t i o n .  

T a b l e  2 g i v e s  Q and v z f o r  c o p p e r  w i r e s  and j e t s  h a v i n g  v = 10 m / s e c  and T = 2273 K. 

We t h u s  h a v e  e x p r e s s i o n s  f o r  t h e  amount  o f  h e a t  n e e d e d  t o  m e l t  t h e  end o f  a r o d  f o r  
various materials with various dimensions, together with the corresponding feed rates. 

We now estimate the size of the microgranules that can be made in this way. The fol- 
lowing forces are involved: surface tension, gravitation, and aerodynamic resistance. 

The radius is derived on the basis that the resistance and the gravitational force are 
at 90 ~ , while their resultant and the axial component of the surface tension act along the 
same straight line. 

The equilibrium condition defines the radius: 

Fst v (mzg z -t- Fs) I/2, ( 20 )  

in which Fst is the axial component of the surface tension force: 

F s t  ~ 2~r[3 cos % (21)  

where 8 is taken at Tmp and 

cos~ ~ r/~ (22) 

(r d is droplet radius), and 

F s :  6~qv[lq-O,265(vq/v)2/3] .  (23)  

We substitute (21)-(23) into (20) to determine r d. The numerical solution to (20) with 
characteristic jet parameters for granules made from a copper rod having r=7.10 -5 m gives 
r d = 160 pm. 

The parameters delved from these estimates show that the scheme can give monodisperse 
dropets for metals with moderate and high melting points. 

NOTATION 

Nu, Nusselt number; Re, Reynolds number; c, coefficient of proportionality; n, exponent; 
v, kinematic viscosity; d, wire diameter; T, temperature; el, ~2, ~3, ~4, a, heat-transfer coeffi- 
cients; ~, thermal conductivity; Tmp, melting point; s heating length; s, heating surface area; Qz, 
heat flux from hot jet to heated part; Q2, radiative heat flux; o, Stefan's constant; gz and 
g2, blacknesses of cylinder and hot gas; Q, total heat flux; Gr, Grashof number; g, accelera- 
tion due to gravity; Pr, Prandtl number; AT, temperature difference between rod surface and 
environment; Tm, characteristic temperature; Tsu , surface temperature, Ten, gas temperature; 
X, thermal diffusivity; O, density; Cp, specific heat; ql, radiative energy flux from unit 
surface; x, longitudinal coordinate; S and P, area and perimeter for cross section of rod 
correspondingly; Ki and K2, roots of characteristic equation; T z and T2, particular solutions 
to (13); r, rod radius; c I and c2, coefficients; Qa heat flux from rod; L, latent heat of 
fusion; vz, rod supply rate; K, coefficient in solution; Fst , axial component of surface 
tension force; 8, surface tension coefficient; Fs, Stokes force; q, dynamic viscosity of 
gas;v, plasma jet speed. 
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